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I Simulation of Nonstationary, Non-Gaussian Water Levels on the Great Lakes 

A methodology for simulating nonstationary, non-Gaussian water levels on the Great 
Lakes is presented for use in providing input scenarios for erosion modeling on the Great 
Lakes. The methodology utilizes a low pass filtering technique to reduce the data to a 
stationary time series after which the data is transformed to a Gaussian series via use of 
the empirical distribution function coupled with a specialized tail fitting procedure for 
the extreme values in the data. The reduced series can then be resimulated in. the frequency 
or time domain. The present series is resimulated in the frequency domain via a target 
spectrum, the spectrum of the reduced series. Inverse procedures are then utilized to simu- 
late the original series. Comparisons of statistical and time series properties of the 
original and simulated series are made for a number of sites on the Great Lakes and it is 
found that the methodology provides a reasonable simulation for the original data. 

DD Form 1473, JUN 86 Previous editions are obsolete - SECURITY CLASSIFICATION OF TI-llS PAGE 
Unclassified 



PREFACE 

The investigation described in this report was authorized as part of the 

Civil Works Research and Development Program by the Headquarters, US Army 

Corps of Engineers (HQUSACE). This study was conducted by the work unit enti- 

tled "Stochastic Coastal Models," Work Unit 32487, under the Shore Protection 

and Restoration Program at the Coastal Engineering Research Center (CERC) of 

the US Army Engineer Waterways Experiment Station (WES). Messrs. John H. 

Lockhart, Jr., John G. Housley, and James E. Crews were the HQUSACE Technical 

Monitors. Dr. C. Li~~wol~tl Vincent is CERC Program Manager. 

The study was conducted from February 1988 through January 1990 by 

Drs. Todd L. Walton, Jr., CERC, and Leon E. Borgman, Professor of Statistics, 

University of Wyoming, Laramie, Wyoming. 

This study was done under the general supervision of Dr. James R. Houston 

and Mr. Charles C. Calhoun, Jr., Chief and Assistant Chief, CERC, respectively, 

and under the direct supervision of Mr. Thomas W. Richardson, Chief, Engineer- 

ing Development Division, CERC. 

Commander and Director of WES during publication of this report was 

COL Larry B. Fulton, EN. Dr. Robert W. Whalin was Technical Director. 



CONTENTS 

Page 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  PREFACE i 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  METHODOLOGY 3 

. . . . . . . . . . . . . . . . . . . . . .  Stationary Procedures 4 
Normalization Procedure . . . . . . . . . . . . . . . . . . . . .  8 
Standardization Procedure . . . . . . . . . . . . . . . . . . . .  8 

. . . . . . . . . . . . . . . . . . . . . . .  Spectrum Calculation 9 
. . . . . . . . . . . . . . . . . .  Simulation Spectrum Generation 9 

Destandardization Procedure . . . . . . . . . . . . . . . . . . .  11 
Distribution Function Transformation . . . . . . . . . . . . . . .  12 
Nonstationary Transformation . . . . . . . . . . . . . . . . . . .  15 

RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , a .  15 

CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

APPENDIX I . REFERENCES . . . . . . . . . . . . . . . . . . . . . . . .  19 

APPENDIX 11 . NOTATION . . . . . . . . . . . . . . . . . . . . . . . .  21 

FIGURES 1-21 



Simulation of Non-stationary, Non-Gaussian Water 
Levels on the  Great Lakes 

Todd L. Walton Jr .  ',M. ASCE and Leon E. Borgman 2,M. ASCE 

INTRODUCTION 

Non-stationary non-Gaussian time series having correlation structure are common 

to the coastal engineering field. Often one does not know much about the underlying 

process or processes causing the series to vary as it does and hence cannot predict 

its future values with any certainty. Future values of the series can run a very 

different course than past values and hence a direct application of past events to  

future scenerios is not always a safe course of action. To do proper engineering 

design within a probabilistic framework it is safer to  extract as much pattern from 

the process as feasible including extremal behavior, and then to prepare various 

possible future scenerios of the process for design purposes by some type of stochastic 

simulation. It should be emphasized that these are not deterministic predictions of 

what will occur at a particular time in the future. Rather, the set of such scenerios 

represent typical future conditions which the design or operation must withstand. 

The design should be examined relative to each such scenario to establish a range 

of response from "worst" to  "best". 

This paper will present one approach to simulation for a non-stationary non- 

Gaussian time series of hourly water levels on the Great Lakes. An earlier paper 

(Walton (1989)) discussed an autoregressive simulation approach in the time do- 
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main of the pseudocyclic behavior of the monthly mean water levels in the Great 

Lakes. One underlying need for dynamic simulation of water levels is to  drive a cross 

shore sediment transport numerical model (see, for example, Kraus and Larson(1988) 

or Kriebel and Dean(1985)) for assessment of erosion volume versus frequency-of- 

occurrance curves. The dynamical aspects of the water level records are important 

to  determination of such erosion volume/frequency-of-occurrance curves. As an ex- 

ample, a storm having a large peak water level but short duration can produce less 

erosion than a storm having a lower peak water level but longer duration. 

Examples of the processes to be simulated herein are provided in Figs.1 and 2 which 

represent the average hourly water levels for the 1978 fall season (October through 

December) at two sites: Holland, Michigan; and Erie, Pennsylvania. These hourly 

water levels were measured at National Oceanic and Atmospheric Administration 

(NOAA) Great Lake water level gage sites, numbers 7031 arid 3038, respectively, 

and were provided courtesy of the NOAA Great Lakes Acquisition Unit in Rockville, 

Maryland. 

I t  is obvious from the time series plots that the short term (hourly) lake level is 

not stationary as evidenced by the heteroscedastic nature of the series fluctuations 

about a changing mean level. This complex structure of water levels is due to  

the underlying non-stationary forcing functions of wind, barometric pressure, and 

precipitation, which drive the water levels from equilibrium. The complexity of the 

water level series is also due to the complex response of the Great Lakes basins to  

the forcing functions. One such basin response to  extreme event forcing function is 

seiching which is apparent in the water level records after an initial extreme event 

water level shock. 



The non-Gaussian nature of these short term water levels is best seen in histograms 

of the water levels Figs. 3 and 4. These histograms depart from the Gaussian dis- 

tribution as might be expected considering the numerous complex forcing functions 

which drive the Great Lakes water levels. 

METHODOLOGY 

For simulation of the present water levels, it is apparent from the above dis- 

cussion that the simulation methodology utilized will have to deal with the non- 

stationary character of the data. In the present procedure this is accomplished via 

filtering/detrending/normal scores transformation procedures to  reduce the data to  

stationarity, followed then by Gaussian correlated simulation, and, subsequently, by 

inverse operations to recapture the non-stationary non-Gaussian trending character- 

istics of the original data. The procedure deals with non-Gaussian data distribution 

functions of a varying unknown nature with tails representative of the measured 

extremes through a robust tail fitting procedure coupled with use of the empirical 

distribution function and a bootstrapping procedure for simulation purposes. 

As a basis for later comparison of the simulated data to the measured data, the 

following four plots are considered: the time series plot (shown in Figs. 1 and 2); 

the histogram ( Figs. 3 and 4); a spectral density plot, and an autocorrelation plot. 

Autocorrelation plots for the 1978 fall hourly water levels for the Holland and Erie 

sites are provided in Figs. 5 and 6 respectively. Spectral density plots for the same 

data as smoothed via a Gaussian window function are provided in Figs. 7 and 8. 

The entire procedure for simulating future scenerios of water levels consists of a 

pattern analysis procedure for reduction of data to  stationary Gaussian correlated 



random noise coupled with a simulation procedure for reconstructing future scenerios 

of water levels from simulated Gaussian random noise having the same underlying 

correlation structure as the original series. The two part analysis procedure is best 

described via block diagram as in Fig 9. A step by step discussion of the procedure 

follows. 

Stationarity Procedures 

The data is first low pass filtered to determine a time varying mean and time vary- 

ing standard deviation using a Gaussian shaped smoothing or convolving function 

of the form: 

where c is a constant to  adjust the width of w(r ) .  The Fourier transform of W ( T )  is 

given as: 
00 

W ( f )  = W ( T )  exp (-i2n-f r )6r  
-cQ 

hence w(0) = l / c  and W ( 0 )  = 1. 

The effective width of w ( r )  is defined as the width of a square pulse which has 

height w(0) and area equal to W ( 0 )  (i.e., the area under w ( r ) ) .  Thus, the value "c" 

may be identified as the effective width of w(r ) .  

The filtered trend vtrend(t) is defined ir, the continuous time domain as a convo- 

lution of the signal v ( t )  with the Ga.ussian smoothing function w(T) :  



where w(r)  is given a chosen effective width. Let Vtrend(f)  be the Fourier transform 

of vtrend(t), and V ( f )  the Fourier transform of v(t) .  

03 

Vtrend(f)  = F{vtrend(t)j = v t r end (~ )  exp ( 4 2 ~  f r)6r (5) 

v ( f )  = F{v ( t ) )  = V ( T )  exp (-i2r f T ) ~ T  (6) 

Since convolution in the time domain is equivalent to  multiplication in the fre- 

quency domain, we then have 

It is convenient to make these operations in frequency domain to  gain large savings 

in computer processing time possible through the use of the fast Fourier transform 

algorithm. 

In practice, only a finite piece of data is available and it is natural to  revert to 

discrete Fourier transform (DFT) definitions. In the discrete time domain the filtered 

trend vtrend(t) is defined as: 

N-1  

vtrend(n A t )  = At w(k A t )v ( (n  - k )  A t )  
k=O 

(8) 

where the sequence v ( n  A t ) ;  n=O, ..., N-1 is made circularly periodic, with period N 

for times outside the defined data. That is; 

This artificial periodicity effects vtrend(n A t )  about one effective width at the 

beginning and end of the time series. The one effective width arises because the 



standard deviation of the Gaussian shape of w ( r )  is A, hence three standard 

deviations are approximately equal to  one effective width, "c". The Gaussian curve 

approaches zero at three standard deviations from the mean. 

Using discrete Fourier transforms with 

N - 1  -i2nmn 
Vtrend(m A f) = At vtrend(n A t )  exp ( 

n=O 
N 1 

N -  1 -i2amn 
V ( m  A f )  = At v(n A t )  exp ( 

n=O 
N 1 

where vtrend(nAt),  v ( n A t )  and w ( n A t )  are all made circularly periodic, the trend 

computation is made in the discrete frequency domain by the following equation: 

where 

and the discrete time equivalent of Eq. 3 is 

Letting the quantity EW be the number of At increments in the effective width c ,  

so that 

c = ( E W ) A t  (17) 

it follows that 



since 

1 
(At) (Af  = , 

Calculations are made very rapidly in the frequency domain using fast Fourier trans- 

form (FFT) techniques (Blahut,(1985)) and the resulting time series vtrend(n A t);  

n=O, ..., N-1 is fourid by inverse fast Fourier transform (IFFT). In actual simulations 

the vtrend(n A t )  series should be made longer than needed such that one effective 

width can be removed a t  the beginning and the end of the series due to  the imposed 

circular periodicity assumptions as noted previously. 

The local variance can be defined in an analogous manner in the discrete time 

domain as a convolution of the instantaneous variance with the same smoothing 

filter w(T): 
N-1 

vvar(n A t )  = m ( t  A t)ivar((n - E )  A t )  (20) 
k=O 

where the instantaneous variance is defined as 

The local variance can then be found as before in the frequency domain by a mul- 

tiplication of the Fourier transform of w(n A t )  by the Fourier transform of the 

instantaneous variance. A different effective width can be used for the variance 

filtering operation if so desired. On inverse Fourier transform, the time domain 

standard deviation series vsd(n A t ) ;  n=O, ..., N-1 can be found as 

Again as in the case of the vtrend series, in actual simulations the vsd(n A t )  series 

should be made longer than needed such that at  least one effective width can be 



discarded at the beginning and end of the series. In this regard the longer of the 

two effective widths (trend and variance fiIter effective width) should be used as the 

basis for discarding information in order to  keep the two series properly aligned. 

The required stationary residuals are then found as; 

These residuals will locally have a mean of zero and standard deviation of unity. 

Normalization Procedure 

The residuals vresid(nAt) are then order ranked by size (smallest to largest) with 

the integer series rank(n A t);n=O, ..., N-1 being the rank number series where each 

value of rank(n A t )  corresponds to  the rank number of vresid(n A t ) .  Hence the 

series rank(n A t);n=O, ..., N-1 ranges between 1 and N .  An estimate of the distribu- 

tion function of the detrended and normalized (mean zero, variance one) data after 

ranking may be stated as: 

rank(n A t )  
~ ( v r e s i d ( n  A t ) )  = 

N + 1  

Each vresid(n A t )  is thus replaced by a standardized normal value "zscore(n A t)" 

having the ranking associated with the empirical probability distribution fractile 

value e. This transformation is accomplished via the following equation: 

rank(n A t )  
zscore(n A t )  = a-'( 

N + 1  1 

where @-I() is the inverse normal distribution function which can be solved for 

numerically (Zelen and Severo(1964) eq. 26.2.23). 



Standardization Procedure 

As a final, usually very small adjustment, the zscore(n A t ) ;  n=O, ..., N-1 series is 

then restandardized to  a zero mean and unit variance via 

zscore(n A t )  - zbar 
z ( n  A t)  = 

zsd 

where zbar and zsd are the mean and standard deviation of the zscore series. 

Spectrum Calculation 

The "target" spectrum for simulation purposes is a smoothed version of the line 

spectrum of the series z(n A t);n=O, ..., N-1. The discrete Fourier transform (DFT) 

of the z(n A t);n=O, ..., N-1 series is: 

and the spectral line at f = is 

S z ( m  A f )  = I Z ( m A f >  l 2  
N A t  

The spectral lines are smoothed over frequency in order to  obtain adequate spec- 

tral density estimates. This is achieved with Gaussian smoothing in the frequency 

domain via the convolution operation: 

For numerical efficency this operation is actually performed in the lag time domain 

via the equation 



where sz(n A t )  is the inverse discrete Fourier transform (IDFT) of Sz (m A f ) ,  and 

EW is an effective width as before where E W  = 3 = c f N  At .  Returning to the 

frequency domain, the smoothed "target" spectrum to be used in the simulation 

process ,Sbar(,m A f ) ,  is the D F T  of sbar(n A t) .  

Simulation Spectrum Generation 

The smoothed "target9' spectrum is then standardized to unit area to  require 

Simulation is based on the random behavior of a real Gaussian covariance stationary 

periodic (period = N A t )  sequence zsim(n A t);n=O, ..., N-1 with a zero mean and 

variance equal to one. The DFT of such a random series is 

N-1 -i2nmn iV 
Zsim(m A f )  = U, - iV, = At  zsim(n A t )  exp ( 

N ) for  0 < m <  -- (32) 
n = O  

2 

where U, and V, are independent, normally distributed random variables with 

zero mean and variance given by Borgman(1973,1982,1990 in press) and Miller and 

Borgman(l985) as: 

where Szsim(m A f )  is the desired line spectrum to simulate. For f < 772 < N ,  

U, = UN-, and V, = --VN-rn (34) 



The frequency series U o ,  U1, Vl, .... U5-, , V X - ~ ,  U x  is thus generated by generat- 

ing N independent standard Gaussian variates 21, Z2,  .... ZN and then calculating the 

frequency series in accordance with Szsim(m A f )  = Sbar(m A f ) :  

etc. 

The simulated Gaussian time series with zero mean and unit variance zsim(n A 

t);n=O, ..., N-1 is then generated via the IDFT of the series Zsim(m A f )  = Urn - 

iV,;m=O, ..., N-1 with the equation: 

Destandardization Procedure 

After generating the zero mean, unit variance time series zsim(n A t);n=O, .. . ,N-1, 

it is rescaled with the zscore(n A t);n=O, ..., N-1 series mean "zbar" and standard 



deviation "zsd". This is done via the equation 

zscosim(n A t )  = zsd . zsim(n A t )  + %bar (37)  

to  create a simulated Gaussian time series zscosirn(n A t);n=O, ..., N-l  having the 

same correlation structure, mean, and standard deviation, as the zscore(nAt);n=O, ...,N- 

1 series. 

Distribution Function Transformation 

At this point the Gaussian simulated series zscosirn(n A t);n=O, ..., N-1 is trans- 

formed back to the probability distribution function of the detrended series to  obtain 

the resulting non-Gaussian trended simulated time series vsimres(n At);n=O, .. .,N-1. 

This is done via back interpolation using the empirical distribution function in the 

central portion of the distribution along with a functional form for the tails of the 

distribution to make the distribution function more "robust". The back interpola- 

tion from the simulated normal score time series zscosim(n A t )  is achieved from 

inverting 

~ ( v s i r n r e s ( n  A t))  = @(zscosirn(n A t ) )  (38) 

where @(z) is the distribution function for a standard normal proba.bility law. This 

may be written as: 

vsimres(n A t )  = E;-l(@(xscosirn(n A t ) ) )  (39) 

where F-'() is the inverse empirical probability distribution function. In practice, 

the step 

u = @(zscosim(n A t ) )  (40) 



is performed with an algorithm from Zelen and Severo(1964) (eq. 26.2.17) and then 

the operation 

vsirnres(n A t )  = F-l  (u) (41) 

is achieved by direct interpolation within the ranked detrended original data, a t  

least for 1/(N + 1) < u 5 N/(N + 1). 

If u < 1/(N + 1) (lower tail) or u > N / ( N  + 1) (upper tail), another procedure was 

selected. It was found that the upper and lower tails of many common probability 

laws such as the normal, exponential, gamma, and lognormal could be fitted either 

exactly or with high accuracy of approximation by a representation of the form: 

v = z l  + (a + bT)' f o r  upper tail (42) 

or 

v = zl - (a + bT)' f o r  lower tail 

where 

T = J-2ln(l - U )  upper tail unbounded above 

T = U - U1 upper tail bounded above 

T = J w j  lower tail unbounded below 

T = U1 - U lower tail bounded below 

The constants a,b,c, and zl are based on extremal values of the ~ ( v r e s i d ( n  A t ) )  

empirical distribution function estimate. 

For the upper tail unbounded above, let zl < z2 < z3 be selected values within the 

upper tail of the ranked vresid(nAt) values, and ul  < u2 < U S  be the corresponding 

values of rank/(N+l). 



If the upper tail is bounded by some value ztop, then set z3 = zlop and us = 1.0. 

The other two sets of (z,u) are obtained as before. 

For the lower tail unbounded below, the procedure is very similar. Let z3 < zz c zl 

be selected within the lower ranked values of vresid(n A t )  and us < ua < ,ur be the 

rank/(N+l) values associated with them. 

If the lower tail is bounded below by zt,otton, then set z3 = zaoltorn and u3 = 0.0. 

The other two pairs of (z ,  u) are picked as for the unbounded below case. 

The zl in the previous tail representation formula coincides exactly with the zl 

values assigned for each tail here. The ul  values needed for the bounded cases in 

each tail are the corresponding ul values selected here. 

This leaves the a,b,and c values which can be computed by: 

where TI is the value of T computed from ul in the previous definition of T. 

The direct empirical interpolation is performed for l o w e ~ t a i l u ~  <: u < uppertnidul, 

while the tail approximation formulas are used for values outside this interval. 

Although the upper and lower tail represent a very small fraction of the simulated 

values, they are important in many engineering problems where extremes are signif- 

icant. In most published "bootstrap" procedures, the sirnula'ciot~s are restrictcd to  

lying between the maximum and minimum of the original data. In predicting the 

future, these methods appear artificial, since it seems obvious that extreme values 



outside the historical data base may occur eventually unless there is some sort of 

finite bounds due to the physical constraints. 

The procedure presented represents a type of tail-extended bootstrap simulation 

generalized with a normal score transformation. A great deal of research and com- 

parison with common population probability laws was involved in selecting the tail 

formulation recommended above (Borgman,(l989)). It  appears reasonable under 

circumstances examined to date. 

Nonstationarity Transformation 

The last transformation necessary to produce a simulated series vsim(nAt);n=O, ..., N- 

1 is an inverse transformation using the computed vtrend(nAt) and vsd(nAt) series. 

The final simulated non-stationary, non-Gaussian time series is found as: 

This operation is performed in the time domain. 

RESULTS 

Results of the simulation procedure for one simulation run for the Erie site is 

presented in time series plot, Fig. 10, histogram Fig. 11, autocorrelation Fig.12, and 

smoothed spectrum (via a Gaussian window) Fig.13. These figures can be compared 

to the actual series plots in Figs.2,4,6, and 8. The low pass trend and standard 

deviation series for the Erie site are shown in Fig.14 and Fig.15 respectively. The 

effective filter width utilized for the trend series was 20 hours while the effective filter 

width utilized for the standard deviation series was 50 hours. As the effective width 



chosen is somewhat of an ad hoc procedure, no justification for these choices of filter 

width is given. A natural extension of these procedures is to analyze and synthesize 

the smoothing trend and local standard deviation series in a similar manner rather 

than use the deterministic output directly from the data analysis. This would not 

involve any new theory but rather would introduce a hierarchy of sinxuiations. It  is 

not being done here because it would introduce unnecessary complexity in explaining 

the method. 

Results of the simulation procedure for three simulation runs at the Holland site 

are provided in Figs. 16 thru 19 for the time series, histogram, autocorrelation 

and smoothed spectra (smoothed via a Gaussian window). The low pass trend and 

standard deviation series for this site were computed with the same effective filter 

width as the Erie site. Results are shown in Figs. 20 and 21. 

CONCLUSIONS 

The results of the procedure seem to "mimic" the original data in a reasonable 

fashon while still incorporating process noise consistant with the original series. The 

method can analyze and simulate a large time series extremely fast. The method 

allows for exact duplication of the univariate probability law contained in the data 

behavior and is thus capable of producing non- gaussian pfocess behavior related 

to skewness and higher order moments. It is understood that some of the higher 

order bivariate moments may not be properiy reproduced by this t~ansformatiorl to 

gaussian (and the inverse transformation). Applications for which the higher order 

bivariate (trivariate, etc.) moments are importarit should consider other techniques, 

perhaps based cn  Volterra series. The method also allows for the treatment of 



non-stationarity in mean and variance either through including the bursts of non- 

stationarity of data in deterministic fashion or through a hierarchy of simulations as 

suggested in the text. 
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APPENDIX 11. NOTATION 

a ,  b = empirically fit constants; 

c = Gaussian time domain weighting function constant, also empirically fit con- 
stant; 

cf= Gaussian frequency domain weighting function constant; 

E W  = effective width of filter; 

f = frequency; 

ivar(n A t)= discrete time instantaneous variance series; 

m,  n = index counters; 

N = number of signal samples; 

rank(n A t )  = discrete time integer ranking series; 

sbar(n A t )  = inverse discrete Fourier transform of Sbar(m A f )  series; 

Sbar(m A f )  = smoothed spectral line function of z series; 

Sz(m A f )  = spectral line function of z series; 

Szsim(m A f)=desired spectral line function series for simulation; 

t = time; 

T = tail function value; 

ui ; i = 1, N = fractile value 
U,,, = real part of Zsim(m A f )  series; 

v(t) = signal function, time representation; 

V(f)  = signal function, frequency representation; 

Vm = imaginary part of Zsim(m A f )  series; 

vresid(n A t )  = discrete time stationary signal series; 

vsd(n A t )  = discrete time standard deviation series; 

vsim(n A t )  = discrete time simulated signal series; 

vsimres(n A t )  = discrete time simulated stationary signal series; 

vtrend(t) = filtered trend function, time representation; 

vtrend(n A t )  = discrete time trend series; 

Vtrend(f)=filtered trend function,frequency representation; 

Vtrend(m A f)=discrete time Fourier transform of vtrend(n A t )  series; 



vvar(n A t )  = discrete time smoothed variance series; 

W(T) = weighting function, time domain representation; 

w(n A t)= discrete time weighting series; 

W( f )  = weighting function, frequency domain representation; 

W(m A f)=discrete time Fourier transform of w(n A t )  series; 

z(n A t )  = discrete time standardized zscore series; 

Z(m A f ) =  discrete Fourier transform of z series; 

Zi; i = 1, N =independent standard Gaussian random variable; 

zbar = mean of the zscore series; 

zscore(n A t )  = discrete time standardized normal score series; 

zsd = standard deviation of the zscore series; 

zscosim(n A t)  = discrete time restandardized simulated Gaussian series; 

zsim(n A t)= discrete time simulated signal series; 

Zsim(m A f )  = discrete time Fourier transform of zsirn(n A t )  series; 

F ( )  = empirical distribution function; 

F - I ( )  = inverse empirical distribution function; 

30 = Fourier transform notation; 

@() = standard normal distribution function; 

@-I()  = inverse normal distribution function; 

A f = frequency step; 

A t  = time step; 
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Holland 7031 fall 78 autocorrelation 

Figure 5. Autocorrelation, Hourly Water Levels, Oct. - Dec. 1978, Holland, MI. 
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Orig ina l  Data 
(Nonsta t ionary ,  nongaussian) 

S t a t i o n a r i  t y  Procedures 
( c a l c u l a t e s  moving average t r e n d ,  
var iance;  conver t s  t o  s t a t i o n a r y  d a t a )  

Normalizat ion Procedure 
( t r ans fo rmat ion  t o  gauss ian  d a t a )  

Analys is  

S tandard iza t ion  Proc6dure 
(conver t s  t o  z e r o  mean, u n i t  v a r i a n c e )  

Spectrum C a l c u l a t i o n  
( t a r g e t  s i m u l a t i o n  "coloredn spectrum) 

Simula t ion  Spectrum Generat ion 
(s imula ted  "colored" spectrum 
of normal-score time s e r i e s )  

Des t a n d a r d i z a t i o n  Prdcedure 
( r e i n t r o d u c e  mean and s t andard  d e v i a t i o n  
from s t a n d a r d i z a t i o n  procedure)  

D i s t r i b u t i o n    unction Transformation 
(conver t  s imula ted  gauss ian  d a t a  t o  da-ta 
wi th  c o r r e c t  p r o b a b i l i t y  d i s t r i b u t i o n )  

Nons t a t i o n a r i  ty    ran sf ormat i o n  
( r e i n t r o d u c e  t r e n d  and va r i ance  
from s t a t i o n a r i  ty  procedure)  

Simulated Data 
( nons t a t  i onary , nongaussian 

Syn thes i s  

F i g u r e  9 .  Block Diagram o f  S i m u l a t i o n  Procedure .  
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Figu re  15. Loca l  Standard Devia t ion ,  Hourly Water Levels, 
Oct. - Dec. 1978, Erie, PA. 
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Figure 19. Smoothed Spectra, Simulated Hourly Water Levels, 
Oct. - Dec., (3 Runs), Holland, MI. 
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